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The dynamics of particle–particle collisions and the bouncing motion of a particle
colliding with a wall in a viscous fluid is numerically investigated. The dependence
of the effective coefficient of restitution on the Stokes number and surface roughness
is analysed. A distributed Lagrange multiplier-based computational method in a
solid–fluid system is developed and an efficient method for predicting the collision
between particles is presented. A comparison between this method and previous
collision strategies shows that the present approach has some significant advantages
over them. Comparison of the present methodology with experimental studies for the
bouncing motion of a spherical particle onto a wall shows very good agreement and
validates the collision model. Finally, the effect of the coefficient of restitution for a
dry collision on the vortex dynamics associated with this problem is discussed.

1. Introduction
Collisions between particles in a dispersed flow occur in several natural and

industrial applications such as sedimentation, crystal growth, and microfluidic devices.
For example, the design and utilization of microfluidic devices for mechanical cell
lysis requires a better understanding of particle collisions in low and intermediate
Reynolds number flows.

To accurately predict the behaviour of particulate flows, fundamental knowledge
of the mechanisms of particle–particle and particle–wall interactions is required.
Most of the existing theoretical studies focus on particle interaction at low Reynolds
numbers. Classical lubrication theory predicts that the lubrication force is singular
as the distance between two smooth spheres approaches zero and hence prevents
smooth spheres from touching. In practice, no general numerical method can afford
the computational cost of resolving the flow in the narrow gaps between closely
spaced particles and some modelling is needed. On the other hand, experiments have
shown that for rough particles, physical contact could occur which would affect the
relative motion of the particles (Arp & Mason 1977).

Kushch et al. (2002) developed a viscous potential flow model for the motion of
high-Reynolds-number and finite-Weber-number bubbly flows. They showed that the
use of the potential flow approximation together with non-hydrodynamic repulsive
forces from an image bubble for the collision of a rising bubble with a horizontal
wall yields good agreement with the experimental results by Tsao & Koch (1994).
However, the mechanism for the bouncing phenomenon may be different from the
one modelled, since the interaction of the viscous boundary layer at the wall with the
bubble is not taken into account.
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Davis (1992) considered a roll/slip model and a stick/rotate model for the motion
of touching spheres in Stokes flow and found that the roll/slip model is consistent
with experiments (Zeng, Kerns & Davis 1996). Ekiel-Jezewska et al. (1999, 2002)
used the roll/slip model of contact for interaction between two spherical particles
immersed in a viscous fluid. Comparison of the model with experimental results for
the settling motion of a sphere in the vicinity of another fixed sphere showed good
agreement.

Zhang et al. (1999) considered collision of a sphere onto a stationary sphere at finite
Reynolds numbers. Their experimental results are in agreement with the mechanistic
model they developed and the numerical results using the lattice Boltzmann method.
Lin, Wang & Olsen (2004) studied an elastic collision between two cylindrical particles
also using the lattice Boltzmann method.

Particulate flow simulations under the Stokes flow assumption have been conducted
using Stokesian dynamics techniques (Brady & Bossis 1988). For dilute suspensions,
the unsteady motion of two solid spheres has also been analysed (Ardekani &
Rangel 2006). However, for intermediate Reynolds numbers the use of numerical
simulation is generally unavoidable. A distributed Lagrange multiplier (DLM)-
based computational method is used here in order to simulate particulate flow and
collisions between particles. The DLM method, developed in the last decade for direct
simulations of particulate flow, was presented by Glowinski et al. (1998, 1999), who
employed a finite-element method with a fixed structured grid, thus eliminating the
need for remeshing required for unstructured boundary-fitted grids. In this method,
the entire domain is treated as a fluid, but the fluid inside the particle domain
satisfies a rigidity constraint by using Lagrange multipliers. The DLM solution can
be formulated by forcing the deformation tensor in the particle domain to be zero,
thus eliminating U and ω as variables from the coupled system of equations, where U
and ω are the translational and angular velocity of the particle, respectively (Patankar
et al. 2000; Patankar 2001). This formulation introduces a stress field in the particle
domain similar to the pressure in an incompressible fluid. Sharma, Chen & Patankar
(2005) presented a formulation based on DLM for steady Stokes flow using a control
volume method. Similarly, a numerical simulation developed in the present paper is
based on the DLM approach implemented using a control volume method and the
SIMPLE (Patankar 1980) algorithm.

In practice, for a particulate system with a large number of particles, no general
numerical method can afford the computational cost of resolving the flow in the
narrow gaps between closely spaced particles. Therefore, using lubrication theory
becomes necessary. In lattice Boltzmann simulations (LADD 1994a, b) or Stokes
multipole simulations (Brady & Bossis 1988; Sangani & Mo 1994), lubrication forces
are incorporated when the particles are near contact. Similarly, lubrication forces can
be applied to the particles instead of refining the grid between neighbouring particles
utilizing the DLM method.

Previous analyses show that smooth particles do not come into physical contact
under finite forces (Davis 1987). However, in numerical simulations, contact can occur
due to numerical truncation errors and thus it is necessary to use a reliable collision
strategy. In earlier approaches, a repulsive force was applied to the particles when
their separation was less than a critical value. In order to have at most one rigid-body
motion constraint at each node, the particles were limited to be more than one grid
element apart, as described by Glowinski et al. (1999) and Singh et al. (2000). Singh,
Hesla & Joseph (2003) modified DLM in order to eliminate the so-called security
zone by allowing the particles to be close to each other and even overlap. They used
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the constraint of the closer particle to the node, in order to prevent the conflict of
having two rigid-body constraints at one node. The repulsive force is applied when
the particles overlap. In these collision schemes, the choice of the stiffness parameter
is important. If the stiffness parameter is too small, the collision will not be prevented,
and if it is too large, the repulsive force will be too strong and particles will bounce
unrealistically, as explained by Hu, Patankar & Zhu (2001). Another approach is
to use the solid-body collision model which neglects the fluid during the collision
process. In this method, a fully explicit scheme is used for updating particle positions
and velocities but the method can be unstable, as noted by Hu et al. (2001).

In this paper, we do not apply a repulsive force and instead the contact force
between particles is computed. By using conservation of linear momentum along the
particles line of centres, both particles can be rigidified together. One advantage of this
method is that the particle velocity is not updated explicitly, thus preventing numerical
instabilities. Furthermore, unlike in earlier approaches, there is no possibility of having
two constraints for one node. Contact starts when the distance between particles
becomes zero for smooth particles and ends when the contact force becomes zero or
negative since the particles cannot apply a tensile force to each other. For particles
with surface roughness, the contact starts when their separation reaches the roughness
height.

In reality the particles possess some elasticity and the fluid has some compressibility
so that the instantaneous change in the particle velocity results in a continuous change
in the fluid velocity and pressure fields. Here we assume that the particle is rigid and
the fluid is incompressible. Thus, the instantaneous change in particle velocity leads to
an instantaneous change in the velocity field due to the elliptic nature of the governing
equations. Integrating the Navier–Stokes equation during the collision processes, we
have

ρ
f
{u(t+

c ) − u(t−
c )} = −∇Ĩ , (1.1)

where Ĩ is the pressure impulse, tc is the time at which the collision occurs. Superscripts
− and + refer to infinitesimal times before and after the collision, respectively. Thus,
the pressure gradient will be unbounded and numerically we obtain a finite pressure
impulse.

There are several studies on the rebound of colliding particles in recent years.
Davis, Serayssol & Hinch (1986) employed an elastohydrodynamic model for collision
between particles suspended in a liquid. Throughout these collisions, the particles are
separated by a viscous liquid film. The pressure force in this lubrication film is
sufficiently large to cause the particles to deform and rebound without making solid-
body contact. They showed that the pertinent parameter for collision in the fluid is
not the Reynolds number Re but the Stokes number St = 1

9
(ρ

p
/ρ

f
)Re, where ρ

p
and

ρ
f

are the particle and fluid densities, respectively. No rebound occurs for St lower
than a critical value due to the fact that the elastic energy stored by the particle
deformation is dissipated in the fluid. The experiments by Joseph et al. (2001) show
that the rebound velocity depends strongly on the impact Stokes number and weakly
on the elastic properties of the material, where the Stokes number is defined using
the approaching velocity of the particles. It has been shown that below a St of 10,
no rebound occurs (e.g. Joseph et al. 2001; Gondret et al. 1999, 2002). For impact
Stokes numbers larger than 500 the coefficient of restitution asymptotes to that for
a dry collision. Davis et al. (1986) concluded that the Stokes number dependence is
due to the drainage of the liquid film formed between the particle and the wall, as
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noted by Legendre et al. (2006). Barnocky & Davis (1989) considered the variation
of the density and viscosity with pressure. The increase in viscosity and density with
pressure leads to solidification of the fluid in the contact region and affects the
rebound. However, they concluded that the effect of the increase in viscosity on the
normal collision behaviour is small (noted by Joseph & Hunt 2004).

Surface roughness has a significant effect on rebound velocity because the
lubrication layer between two colliding objects is very small, and may be of the
same order of magnitude as the surface roughness, and consequently, contact may
occur through microscopic surface imperfections, as noted by Smart & Leighton
(1989). Davis (1987) developed a theory for the collision of rough surfaces with
small bumps with dilute surface coverage. He showed that the surface roughness
has negligible effect on the viscous force until the gap between the smooth surfaces
becomes equal to the size of largest roughness element. At this time, the bumps make
physical contact due to the discrete molecular nature of the fluid and/or attractive
London–van der Waals forces, further approach is prevented, and solid–solid contact
occurs.

Whereas several experimental studies have been conducted on the influence of the
fluid on the collision process, few numerical studies address this issue. In this work,
we numerically study the effects of surface roughness and Stokes number on the
rebound velocity and obtain results which are in agreement with the experimental
results by Gondret et al. (2002). The governing equations are presented in § 2. A
simple and efficient computational scheme is described in § 3. The collision strategy
is explained in § 4. Finally, the method is verified by applying it to different
fluid–particle interaction problems in § 5. Bouncing motion of a spherical particle
towards a wall is studied numerically and the results are compared with experimental
results.

2. Theoretical development
In this section, the DLM method for the motion of one particle is described but

the method can be easily extended for additional particles. Let Γ represent the fluid
boundary which is not shared with the particle. The solid domain and its boundary
are denoted by P and ∂P , respectively. The computational domain is Ω , including
both the fluid and the particle. The governing equations in the fluid domain are

ρ
f

Du
Dt

= ∇ · σ + ρ
f

g inΩ \ P, (2.1)

∇ · u = 0 in Ω \ P , (2.2)

u = U i on ∂P, (2.3)

σ · n = t on ∂P, (2.4)

u|t=0 = u0(x) inΩ \ P , (2.5)

in addition to the outer boundary conditions on Γ . In these equations, u is the fluid
velocity, g is the acceleration of gravity, ρ

f
is the fluid density, n is the normal unit

vector, U i is the particle velocity, and t is the traction vector on the particle surface.
The initial velocity u0 satisfies the continuity equation, σ = − pI + τ is the stress
tensor, p is the pressure field, I is the identity tensor, and τ is the viscous stress:

τ = 2µD[u] = µ[∇u + (∇u)T ]. (2.6)
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The governing equations in the particle domain are

ρ
P

Du
Dt

= ∇ · σ + ρ
P
g inP, (2.7)

∇ · u = 0 in P, (2.8)

D[u] = 0 in P, (2.9)

u = U i on ∂P, (2.10)

σ · n = t on ∂P, (2.11)

u|t=0 = u0(x) in P, (2.12)

where ρ
P

is the particle density. Equation (2.9) satisfies the continuity equation, but
in order to facilitate numerical implementation, equation (2.8) is retained. As pointed
out by Sharma et al. (2005), the rigidity constraint gives rise to a stress field inside the
particle which is a function of three scalar Lagrange multipliers for three-dimensional
problems. Thus, for a two-dimensional problem, the stress field can be represented in
terms of two scalars:

σ = −pI + τ + D[λ], (2.13)

where λ represents the Lagrange multipliers and τ is zero inside the particle due to
the rigidity constraint. The governing equations in the entire domain can be combined
as

ρ
Du
Dt

= ∇ · σ + ρg + f inΩ, (2.14)

∇ · u = 0 in Ω, (2.15)

u|t=0 = u0(x) in Ω, (2.16)

where

ρ =

{
ρ

f
in Ω \ P ,

ρ
P

in P,
(2.17)

in addition to the outer boundary conditions on Γ . In the above equations, f =
∇ · D[λ] is zero everywhere except in the particle domain and leads to the rigid-body
motion inside the particle.

3. Numerical implementation
A finite-volume method using a staggered grid for incompressible flow is

implemented. The SIMPLE algorithm (Patankar 1980) is used to solve the fluid
equations with modifications to account for the presence of particles. The Crank–
Nicolson scheme is used for time discretization.

The discretized momentum equations in the x and y directions are

a
i,J

u
i,J

=
∑

anbunb −
p

I,J
− p

I−1,J

δxu

�Vu + b
i,J

+ Fx, (3.1)

a
I,j

v
I,j

=
∑

anbvnb −
p

I,J
− p

I,J−1

δxv

�Vv + b
I,j

+ Fy, (3.2)

where �Vu and �Vv are the volumes of the u-cell and v-cell, respectively; u and v

represent the horizontal and vertical components of the velocity field; I and J are the
nodes at the centre of the main control volumes; while i and j represent the nodes
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Figure 1. Staggered grid, u control volume and corresponding volume fraction.

at the centre of the control volumes for u and v, respectively, as shown in figure 1.
Subscript nb refers to corresponding neighbouring staggered control volumes; b is
the momentum source term which includes the gravity term; and F represents the
rigidity force which makes the velocity field inside the particle domain satisfy the
rigidity constraint.

Following the SIMPLE algorithm and taking the particles into account, the force F
is added as an unknown variable, and F = F∗ + F′, where F∗ is the force predicted at
each iteration (the force calculated in the previous iteration), and F′ is the correction
force. At each iteration, the rigidity force is defined as

F
xi,J

= F ∗
xi,J

+ Cρ
P
A

i,J
(u

i,J
− u

Ri,J
), (3.3)

and similarly, in the y direction,

F
yI,j

= F ∗
yI,j

+ Cρ
P
A

I,j
(v

I,j
− v

RI,j
), (3.4)

where C is a dimensional constant; A
i,J

and A
I,j

are the areas of the u-cell and v-cell,
respectively; while u

R
is the velocity vector rigidified inside the particle, equal to u

outside the particle domain, and defined as follows:

u
R

= (1 − φ)u + φu
P
, (3.5)

where φ is the volume fraction occupied by the particle in each control volume, defined
separately for u- and v-cells. For example, as shown in figure 1, φu =�Vhatched/�Vu.
In the present study, φ is exactly calculated while u

P
, defined only in the particle

domain, can be calculated as follows:

u
P

= U
P

+ ω × r, (3.6)

where U
P

and ω are the particle translational and angular velocities. By using
conservation of linear and angular momentum for the solid particle, one can calculate
the particle translational and angular velocities as follows (Sharma et al. 2005;



Numerical investigation of particle collisions in a viscous fluid 443

N

N

n

x

y

θ

θ

Figure 2. Schematic of problem and coordinate systems.

Sharma & Patankar 2005):

M
P
U

P
=

∫
P

ρu dx and I
P
ω =

∫
P

r × ρu dx. (3.7)

Defining a rigidity force as in equations (3.3) and (3.4) guarantees that, upon
convergence at each time step, u = u

R
everywhere in the entire domain. The summation

of F over each particle is equal to the external forces applied to that particle, excluding
the gravitational and hydrodynamic forces since these two forces are included in
equation (2.7). Thus, when particles are not in contact we have∑

i

∑
J

F
xi,J

=
∑

I

∑
j

F
yI,j

= 0. (3.8)

Using (3.3) and (3.4) guarantees that the total rigidity force applied to each particle
is zero at each iteration. Finally, the modifications due to the presence of the particle
can be included by adding F as a source term in the momentum equations. Equa-
tions (3.3) and (3.4) are solved after the pressure correction step.

4. Collision strategy
Now, we consider the collision between two particles when the dry coefficient of

restitution is zero. For a frictionless collision, the tangential force is zero and the same
normal force applies to each particle in opposite directions, as shown in figure 2.

Thus, during the collision process, instead of enforcing conservation of linear
momentum for each particle separately, as is done in deriving equation (3.7), linear
momentum will be conserved for the system of both particles along their line
of centres. Meanwhile, linear momentum is conserved in the tangential direction
separately for each particle. The collision process in this method starts when the
distance between particles is zero for smooth particles or equal to the roughness
height (hmin) for particles with a rough surface. We assume that rough surfaces have
small bumps with dilute surface coverage and have negligible effect on the viscous
force until the gap between the smooth portions of surfaces becomes equal to the size
of largest roughness element. The contact ends when the normal force becomes equal
to or less than zero, since the particles cannot apply a tensile force to each other.
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Using the preceding concepts during the collision process, we write

U
nP1

= U
nP2

=

∫
P1,P2

ρun dx

Mtotal

, (4.1)

U
θPα

=

∫
Pα

ρu
θ
dx

M
Pα

, (4.2)

ω
Pα

=

∫
Pα

r × ρu dx

I
Pα

, (4.3)

U
Pα

= U
nPα

sin θ + U
θPα

cos θ, (4.4)

V
Pα

= U
nPα

cos θ − U
θPα

sin θ, (4.5)

N =
∑

i

∑
J

F
xi,J

sin θ +
∑

I

∑
j

F
yI,j

cos θ, (4.6)

where un is the normal velocity, u
θ
is the tangential velocity, N represents the normal

force applied to each particle, and α is the particle index (1 or 2). In earlier methods,
a repulsive force function of distance between particles, was used. These methods do
not guarantee that the particles will not overlap and the minimum distance between
particles and the rebound velocity depend strongly on a stiffness parameter. In the
present method, we can calculate the contact force between particles, and this is used
as a criterion to determine the end of the collision process and no other repulsive
force is employed.

The experimental data by Joseph et al. (2001) demonstrate that below a Stokes
number of 10, no rebound occurs, while for impact Stokes numbers above 500, the
coefficient of restitution appears to asymptote to the coefficient of restitution for a
dry collision e

dc
. Now, we introduce a strategy to handle collision for cases where

rebound occurs. Due to the conservation of linear momentum for the system of two
particles along their line of centres, we have

M
P1

Ut+c
nP1

+ M
P2

Ut+c
nP2

=

∫
P1,P2

ρun dx, (4.7)

where tc is the time at which the collision starts (distance between particles becomes
equal to hmin). Superscripts − and + refer to infinitesimal times before and after
the collision, respectively. Using the definition of the dry coefficient of restitution, we
write

Ut+c
nP2

− Ut+c
nP1

= −e
dc

(
Ut−

c

nP2
− Ut−

c

nP1

)
, (4.8)

where e is the coefficient of restitution. Solving for Ut+c
nP2

and Ut+c
nP1

by using equa-
tion (4.7) and (4.8), we have

Ut+c
nP1

=
e

dc

(
Ut−

c

nP2
− Ut−

c

nP1

)
M

P2

M
P1

+ M
P2

+

∫
P1,P2

ρun dx

Mtotal

, (4.9)

Ut+c
nP2

= −
e

dc

(
Ut−

c

nP2
− Ut−

c

nP1

)
M

P1

M
P1

+ M
P2

+

∫
P1,P2

ρun dx

Mtotal

. (4.10)
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Equation (4.1) is a special case of equations (4.9) and (4.10) with edc =0, i.e. plastic
collision. As explained earlier, linear momentum in the tangential direction and
angular velocity are conserved for each particle separately. Thus, by using the following
equations, the particle linear and angular velocities can be calculated:

U
θPα

=

∫
Pα

ρu
θ
dx

M
Pα

, (4.11)

ω
Pα

=

∫
Pα

r × ρu dx

I
Pα

, (4.12)

U
Pα

= U
nPα

sin θ + U
θPα

cos θ, (4.13)

V
Pα

= U
nPα

cos θ − U
θPα

sin θ. (4.14)

This approach can be extended to particulate flow with large number of particles, and
the extension of the method to objects of general shape needs further investigation.
In extending this method to turbulent flow situations, it is noteworthy that the kinetic
energy is lost during the collision process and this can affect the computational
calculations of the energy cascade.

5. Results and discussion
5.1. Sedimentation of a circular particle in a two-dimensional channel

In this section, results for the fluid–particle solver without collisions are compared with
available results. We first conduct a simulation for sedimentation of a circular cylinder
in a two-dimensional channel. We compare the present results with results presented by
Feng, Hu & Joseph (1994). A circular particle with a diameter d is released in a vertical
channel with a width W = 1.5d under gravity where g = 981 cm s−2. The initial linear
and angular velocities of the particle are zero. The solid-to-liquid density ratio is 1.3
and the Reynolds number based on particle diameter and particle terminal velocity is
6.28. A moving computational domain is used in order to simulate an infinite channel.
The upstream boundary of the computational domain is 10d upstream of the particle,
whereas the downstream boundary is 15d from the particle. The normal derivative
of velocity is zero at the downstream boundary and the vertical walls move with the
average vertical velocity of the particle. In the present simulation, the fluid density ρ

f

is 1, the particle diameter is 0.5, the fluid viscosity µ is 0.1157, and y0 = 0.6d , where
y0 is the initial horizontal position of the particle centre. All dimensional quantities
in this paper are in the CGS system unless otherwise stated. 100 × 570 nodes are
used, the smallest mesh size is 0.0075 × 0.0075, and the time step is 0.004. Figure 3
compares present results with the results by Feng et al. As can be seen, our results
are in good agreement with the published results. The particle moves away from the
wall and oscillates about the channel centreline until it reaches equilibrium and moves
along the centreline.

5.2. Sedimentation of two circular particles in a two-dimensional channel filled
with a Newtonian fluid

In this section, we present the sedimentation of two circular particles in a Newtonian
fluid inside the vertical channel. The conditions used here are equal to those used
by Glowinski et al. (1999). The fluid density is ρ

f
= 1, the acceleration of gravity is

g = 981, the viscosity is µ = 0.01, the particle diameters are 0.25 and the solid-to-fluid
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Figure 3. Trajectory of settling particle in a vertical channel. Re =6.28 and ρp/ρf = 1.3.

density ratio is 1.5. Particles are released from rest in a channel with a width of 2 and
a height of 5. The particles are initially at the centre of the channel at y = 1.5 and
y = 2. The Reynolds number based on the maximum velocity of the particles is 470.

The lubrication force acting on two cylinders is linearly proportional to h−3/2, and
hence the cylinders do not touch in finite time. However, in a numerical simulation, an
infinitesimal grid spacing is necessary to prevent contact, which is not computationally
affordable. One could use lubrication theory when the cylinders are sufficiently close
to obtain an approximate solution. In the simulations presented here, the cylinders
are not smooth but have a roughness of hmin = 0.01 %d .

A moving computational domain is used and the boundary conditions are the same
as the previous case. We present results for two different mesh sizes of 0.01 and
0.0066 and two different time steps of 0.001 and 0.0005. Figures 4 and 5 indicate
that the motion of the particles is independent of mesh size and time step before
collision. As will be shown at the end of this section, the post-collision trajectories
of particles are highly sensitive to small variations in the trajectories before collision
and consequently can change significantly with mesh size and time step. This type of
chaotic behaviour was noted by Singh et al. (2003), who considered it impractical to
refine the time step and mesh size to accurately capture the post-collision trajectories.
However, as will be shown later, the separation time is strongly affected by those
small variations in the pre-collision trajectories but the post-collision behaviour of
the particles is almost unchanged and it is only shifted in time.

Figure 6 shows the agreement between the present results and the results by
Glowinski et al. (1999) for the pre-collision behaviour of the particles. In this example,
the coefficient of restitution for a dry collision is assumed to be zero and therefore,
even though the impact Stokes number is about 18, no rebound occurs. The cases
with non-zero coefficient of restitution are presented in the next section.

We now consider the effect of surface roughness. Experimental results by
Smart & Leighton (1989) show that the manufacturing processes generate microscopic
roughness elements on the particle surface, which are typically of order 10−3 to 10−2

times the particle radius. The density of these asperities was sufficiently large to
prevent smooth sections of the surface contacting each other but sufficiently sparse
not to interfere with the fluid in the gap between the two surfaces. Figure 7 compares
the results for particles with different surface roughness. It can be seen that the
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Figure 4. Sedimentation of two circular particles. Particle position and velocity for two cases
are compared. The first case (•) has a mesh size of 0.01 and a time step of 0.001. In the second
case (�), the mesh size is 0.01 and the time step is 0.0005. (a) Horizontal position, (b) vertical
position, (c) u velocity, (d) v velocity.

only effect of increasing the surface roughness is that collision occurs earlier but the
post-collision behaviour is almost unchanged.

Figure 8 shows the normal force N applied to particle 2. As can be seen, this force
is zero when the particles are not in contact, increases rapidly and then decreases
until it becomes zero and the particles separate. After this time N remains equal to
zero.

We now consider a lower Reynolds number flow. The conditions used here are
equal to those in the problem solved by Singh et al. (2003) except that a moving
computational domain is used here (the results presented by Singh et al. 2003 are
for µ = 0.05, although reported incorrectly as µ = 0.08). The boundary conditions are
the same as in the previous cases. The fluid density is ρ

f
= 1, the acceleration of

gravity is g = 981, the viscosity is µ = 0.08, the particle diameters are 0.2, and the
solid-to-fluid density ratio is 1.1. The particles are released from rest in a channel
with a width of 2 and a height of 6. The particles are initially at the centre of the
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Figure 5. Sedimentation of two circular particles. Particle position and velocity for two cases
are compared. The first case (•) has a mesh size of 0.0066 and a time step of 0.00033. In
the second case (�), the mesh size is 0.01 and the time step is 0.001. (a) Horizontal position,
(b) vertical position, (c) u velocity, (d) v velocity.

channel and their separation distance is 0.3. The Reynolds number based on the
maximum velocity is about 10 and the impact Stokes number of the particles is about
0.3; thus no rebound occurs. Figure 9 shows a comparison with the results of Singh
et al. (2003). No repulsive force is used in the present collision strategy which results
in larger separation time. The separation time in our calculations is larger than the
one obtained by Singh et al. (2003), while their results predict larger separation times
than those produced by Glowinski et al. (1999). Numerical tests were conducted to
show that the motion of the particles is independent of mesh size and time step
before collision. The effect of surface roughness is shown in figure 10. It can be seen
that collision and separation start earlier but the particle velocities after separation
remain similar. Figure 11 compares results for two different initial conditions. In the
first case, the particles are located along the channel centreline. In the second case,
the upper particle is moved to the right a distance of 0.5 % of the particle diameter.
As can be observed, the separation time is strongly affected by this disturbance in the
system but the post-collision behaviour of the particles is unchanged.



Numerical investigation of particle collisions in a viscous fluid 449

Time (s)

v 
(c

m
 s

–1
)

0 0.1 0.2 0.3 0.4
–20

–16

–12

–8

–4

0
Vp1 Glowinski et al. (1999)
Vp2 Glowinski et al. (1999)
Vp1 present results
Vp2 present results

Figure 6. Sedimentation of two circular particles. Comparison of present results and results
by Glowinski et al. (1999) for particle vertical velocity. In our results the mesh size is 0.01 and
the time step is 0.0005.
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Figure 7. Sedimentation of two circular particles. In the first case (•) the roughness height is
0.01% of the particle diameter and in the second case (�) it is 2.6% of the particle diameter.
The mesh size is 0.0066 and the time step is 0.00066. The Reynolds number based on the
maximum velocity of the particles is 470.

5.3. Sedimentation of a spherical particle towards a wall

In the previous cases, the dry coefficient of restitution is assumed to be zero and
thus no rebound is observed. In this section, we examine the motion of a spherical
particle which is moving towards a wall with a non-zero dry coefficient of restitution.
Specifically, the collision of a steel sphere with density of 7.8 with a glass wall is
investigated. The dry coefficient of restitution for this system is equal to 0.97 ± 0.02
according to the data reported by Gondret et al. (2002). The sphere is moving
in oil with density of 0.935 and viscosity of 0.1. The sphere diameter is 0.3 and
the gravitational acceleration is g = 981. The numerical simulation is performed
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Figure 8. Normal force applied to particle 2. The mesh size is 0.0066 and the time step is
0.00066. The Reynolds number based on the maximum velocity of the particles is 470.
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Figure 9. Sedimentation of two circular particles. Comparison of present results and results
by Singh et al. (2003) for particle vertical velocity. In our results the mesh size is 0.014 and
the time step is 0.0035.

utilizing axisymmetry. The domain is 2 × 4 and 300 × 300 nodes are used. A fixed
non-uniform structured grid is employed. The smallest mesh size is 0.0003 × 0.001
near the contact region, where higher resolution is needed. As mentioned by Gondret
et al. (2002), for moderate Reynolds number, the lateral walls have negligible effects
on the collision process. The authors compared the results for the largest (10 cm)
and smallest (0.6 cm) tanks and did not observe any difference within the accuracy
of their measurements. We also carried out domain-independence tests and obtained
the same results. First, the effect of surface roughness on the effective coefficient of
restitution will be discussed. For this purpose, the sphere is released 0.6 cm above
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Figure 10. Sedimentation of two circular particles. In the first case (•), the roughness height
is 0.01% of the particle diameter and in the second case (�), it is 3.7% of the particle diameter.
The mesh size is 0.014 and the time step is 0.0035. (a) Horizontal position, (b) Vertical position,
(c) u velocity, (d) v velocity.

the wall. The distance h from the bottom of the sphere to the wall and the particle
velocity are shown in figure 12. The Reynolds number based on the approach velocity
of the sphere and the wall is 62.7 and the impact Stokes number is 58. As can be
seen, rebound trajectories are non-parabolic since the velocity decreases nonlinearly
with time.

A jump in velocity occurs when the particle surfaces come into contact (the surface
itself for smooth particles, the surface bumps for rough particles). At this time,
no liquid is present between the two surfaces and consequently the velocity jumps
to V t+c = − e

dc
V t−

c , where e
dc

is the dry coefficient of restitution. Subsequently, the
particle moves away from the wall and liquid re-enters the gap. A marked decrease
in the particle velocity is due to the large viscous dissipation. Because of this marked
reduction in particle velocity in a very small time, the experimentally measured
coefficient of restitution depends on the resolution of the device used to capture the
particle velocity. The scatter in the experimental data could be due to the same fact
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in addition to the roughness of the surfaces. As the sphere moves away from the wall
and the gap widens, viscous dissipation decreases and the velocity varies more slowly.
We have compared our numerical results with the experimental results by Gondret
et al. (2002). In their work, the sphere motion is captured by a high speed video
camera at 500 images per second. Thus, in order to compare the effective coefficient
of restitution with their experimental results, the coefficient of restitution is defined as
the velocity of the sphere at tc + 0.001s divided by the pre-collision velocity. One could
ideally define the post collision velocity at the time of transition from rapid velocity
change to slow velocity change. However, the period of rapidly changing velocity is
too short to be measured experimentally. In addition, we observed a 5 % decrease in
the velocity before rebound. Joseph et al. (2001) observed this phenomenon whereas
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Gondret et al. did not, perhaps due to the fact that this decrease occurs in 0.8 ms but
their resolution is 500 images per second. Figure 13 shows the effective coefficient of
restitution versus surface roughness for the cases with Stokes number of 58 and 301.
As can be observed, the amount of rebound increases for higher surface roughness.
For hmin = 0.302 µm and St = 58, the effective coefficient of restitution decreases to
0.5. In figure 14, the normalized post-collision particle velocity versus time after
collision is presented for different roughness heights. In order to compare the effect
of roughness on the velocity reduction in the gap between the particle and the wall,
the velocity is normalized by V t+c . It can be seen that the velocity decreases in a very
short time and this is more markedly so for smoother spheres.

Davis et al. (2003) showed that the microscopic surface roughness generally lowers
the effective viscosity of low-Reynolds-number suspensions, as they reduce viscous
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dissipation due to near-contact lubrication stresses. Here, we observed that increasing
surface roughness reduces viscous dissipation and increases the effective coefficient of
restitution at intermediate Reynolds numbers.

The velocity profile in the gap for a case with impact Stokes number of 58 and
hmin = 0.932 µm is shown in figure 15. At 173 µs before collision, a parabolic-like
velocity profile can be seen. As time elapses, the maximum velocity increases until
the gap width is equal to hmin, at which point the collision starts. At this time, a
large jump is seen in the velocity profile and particle velocity. Beyond this time, the
maximum velocity in the gap decreases as the particle moves away from the wall
and the velocity profile develops toward the parabolic-like shape in the opposite
direction. Figure 16 shows the streamlines a short time before (a) and a short time
after (b) collision. The streamlines far from the sphere are similar in (a) and (b) due to
the fluid inertia. However, close to the sphere, the flow direction is changed after the
collision process. The flow direction close to the wall is changed also due to the
pressure gradient, which is generated by upward motion of the sphere. The difference
between the velocity profiles before and after the collision process in the gap between
the sphere and the wall is shown in figure 17. It can be observed that it is very
close to the potential flow solution due to the impulsive motion of a sphere (jump
in the velocity). Thin boundary layers are seen close to the wall and the sphere. The
streamlines are shown in figure 18, which agrees with the potential solution given
by Milne-Thomson (1968). As explained in the Introduction, integrating the Navier–
Stokes equation from t−

c to t+
c , one obtains equation (1.1). It has been shown that for

an impulsive motion starting from rest, u(t+
c ) is irrotational (Milne-Thomson 1968).

For an impulsive motion which is not initially quiescent, integrating the vorticity
equation from t−

c to t+
c results in a vorticity jump equal to zero. Hence, the velocity

jump (u(t+
c ) − u(t−

c )) is irrotational. On the other hand, (1.1) clearly shows that the
velocity jump is a gradient of a function. Despite the presence of the wall, where
additional vorticity is produced, the velocity difference (u(t+

c ) − u(t−
c )) is irrotational

due to the fact that it takes a while for the vorticity generated at the wall to be
diffused. Using this irrotational flow the added mass can be calculated.

Figure 19 compares the results using our numerical method with the experimental
results by Gondret et al. For larger Stokes number, higher rebound is observed, as
expected. It can be seen that the coefficient of restitution we obtain numerically is in
a very good agreement with the experimental measurements. A general description
of rebound is proposed by Legendre et al. (2006) for both solid particles and liquid
drops. They obtained a correlation between the global coefficient of restitution ε and
the Stokes number that incorporates the inertia of the particle (added mass included)
and the viscous force exerted on the particle during the drainage of the liquid film
between the particle and the wall. Here ε is defined as a ratio of the velocity of
particle after collision V t+c to the velocity V∞ before it decreases due to the interaction
with the wall:

ε =
V t+c

V∞
. (5.1)

The Stokes number St∗ including added mass is defined as follows:

St∗ =
(ρ

P
+ C

M∞ρ
f
)V∞d

9µ
, (5.2)
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Figure 15. Velocity vectors in the gap between a sphere and wall during the collision
process. St = 58, hmin = 0.932 µm, and e

dc
= 0.97. (a) Time – tc = −173 µs, (b) time – tc = −81 µs,

(c) time – tc = −1.1 µs, (d) time – tc = 9.9 µs, (e) time – tc = 215 µs.
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where C
M∞ =1/2 is the added mass coefficient. They showed that the coefficient of

restitution can be correlated as

ε = εdc exp

(
− β

St∗

)
, (5.3)

where β = 35 fits the general trend followed by the experimental data. Figure 20 shows
the curve obtained using equation (5.3), experimental results, and our numerical
results. Furthermore, we find that the effect of roughness on the coefficient of
restitution decreases as the Stokes number increases, as shown in figure 21. There
is no quantitative experimental observation on the effect of surface roughness on
the effective coefficient of restitution, which could be due to the fact that, as Joseph
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Figure 19. Coefficient of restitution normalized by that for dry collision as a function of St.
Present results (�), where hmin = 0.7 µm. Experimental measurements for different materials
by Gondret et al. (2002): tungsten carbide (�), steel (�), glass (�), Teflon (�), Derlin (�),
polyurethane (�), and Nylon (�). Roughness in these experimental cases is less than 1 µm.
Lubrication theory of Davis et al. (1986) (−).

et al. (2001) indicated, the characteristic variance observed in the measurement of the
coefficient of restitution is of the order of the experimental uncertainty for smooth
particles and considerably larger for the rougher particles. In the cases studied in
this section, the roughness height is at least an order of magnitude larger than the
elasticity length scale. Thus the deformation of particles is neglected.

It has been shown theoretically and numerically that the added mass for a given
particle is unaltered by finite-Reynolds-number effects and that the contribution to
the total force acting on the particle that depends on the instantaneous value of the
acceleration is identical to that predicted by irrotational theory (Legendre et al. 2003).
Kushch et al. (2002) calculated the added mass coefficient for a bubble in potential
flow by evaluating the impulse using a potential function. For a solid particle moving
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(�); correlation given by Legendre et al. (2006) (−).
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Figure 21. Coefficient of restitution normalized by that for a dry collision as a function of
St for different roughness heights.

normal to the wall, the added mass coefficient is equal to

CM =
1

2

{
1 +

3

8

(
a

a + h

)3
}

up to order (h/a)3, where a is the sphere radius (Milne-Thomson 1968). One can
use viscous potential flow theory for a sphere moving normal to a wall (Ardekani,
Rangel & Joseph 2007) to calculate the contribution of the force applied to the
particle which is proportional to the particle acceleration. The potential flow solution
for this problem can be obtained using the image of a doublet source in a sphere and



Numerical investigation of particle collisions in a viscous fluid 459

1 2 3 4 5 6 8 10
0.50

0.54

0.58

0.62

0.66

0.70
CM by Milne-Thomson
CM equation (5.4)

CM

1 + h/a 

Figure 22. Added mass coefficient for a sphere moving normal to a wall.

is given as a series. The added mass coefficient is plotted in figure 22 and is compared
with CM given earlier. The solid curve shown in figure 22 can be described as

CM =
1

2

{
1 +

1.591

(1.917 + h/a)3.887

}
. (5.4)

For Re � 1, the particle equation of motion can be written as

(CMmf + mp)
dU

dt
= (mf − mp)g − 6πµaλU + Fh. (5.5)

For a spherical particle moving normal to a wall, λ has been calculated by several
researchers using bispherical coordinates as

λ=
4

3
sinhα

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)

[
2 sinh(2n + 1)α + (2n + 1) sinh 2α

4 sinh2(n + 1
2
)α − (2n + 1)2 sinh2 α

− 1

]
(5.6)

(Brenner 1961), where cosh α = h/a. The history term Fh is known for an isolated
sphere in Stokes flow. It has been shown by Ardekani & Rangel (2006) that
the history force for two spheres moving side by side or in tandem is larger than the
history force of an isolated sphere. Similarly, the presence of the wall will affect the
history force. However, the quantitative form of the expression for the history force
including wall effects is not known. Considering the drag force applied to the particle,
the added mass calculated from equation (5.4), and a velocity jump upon contact at
h = hmin, the effective coefficient of restitution can be calculated. The results are shown
in figure 23(a). The coefficient of restitution has a logarithmic dependence on surface
roughness, as has been shown by Sundararajakumar & Koch (1996) and Sangani
et al. (1996). For Stokes numbers larger than 30, as shown in figure 23(b), the slope of
the coefficient of restitution versus the logarithm of hmin is inversely proportional to
St. Numerical data shows a similar trend for hmin > 2 µm. However, their intersects are
smaller than those from the theoretical data. This is due to the fact that the history
term is neglected. It has been shown that the coefficient of restitution calculated this
way does not depend on the Reynolds number (Davis et al. 1986). Numerically, we
calculated the effective coefficient of restitution for St = 301 and hmin = 77 µm and two
different Reynolds numbers of 162 and 35. The coefficient of restitution at Re =35



460 A. M. Ardekani and R. H. Rangel

y = 0.049Ln(x) + 1.018

y = 0.033Ln(x) + 1.015

y = 0.021Ln(x) + 1.010

y = 0.003Ln(x) + 0.995

0

0.2

0.4

0.6

0.8

1.0

1.2

10–7 10–5 10–3 10–1

hmin/d

e—edc

St = 589
St = 95
St = 58
St = 39

(a)
(b)

m = 1.827St–0.990

R2 = 1.000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 500 1000 1500

St

m

Figure 23. Effective coefficient of restitution for a spherical particle colliding
with a wall at Re � 1.

is only 4.5 % higher than the one at Re = 162. Thus, Re has a smaller effect on the
effective coefficient of restitution compared to the Stokes number.

5.4. Vortex dynamics of a sphere colliding onto a wall

When a sphere moves towards a wall and stops upon making contact with it, a
secondary vortex ring is generated from the wake vorticity. The evolution of vorticity
for this problem is considered numerically by Thompson et al. (2006, 2007) and
experimentally by Eames & Dalziel (2000). Thompson et al. (2007) observed that, at
Reynolds numbers higher than about 1000, a non-axisymmetric instability develops,
leading to rapid distortion of the ring system. Using linear stability and direct
numerical simulation, they found that the non-axisymmetric instability is centrifugal
in nature. In these studies, the sphere sticks to the wall after the collision. In the
present work, we discuss the vortex dynamics associated with the collision of a sphere
and a wall for non-zero coefficient of restitution when rebound occurs.

First, we compare our numerical results with experimental results by Eames &
Dalziel (2000). In this case, a sphere is set into motion from a distance of L = 7.5d

above the wall and moves with constant velocity and a Reynolds number of 850. A
non-uniform structured grid and a domain size of 10d × 20d with 300 × 350 nodes are
employed. Figure 24 shows the vorticity contours when the sphere, which is moving
with constant velocity before the collision, sticks to the wall after collision. The left
and right sides of each frame in the figure show the present numerical results and the
experimental results by Eames & Dalziel (2000), respectively. This comparison shows
very good agreement. In figure 24(a, b) the wake vorticity of the sphere approaching
the wall can be observed. As the sphere stops, the wake vorticity moves towards
the wall due to its inertia. The wake vortex threads over the sphere and generates a
secondary vortex ring as seen in figure 24(c). This coherent structure, composed of
the wake and secondary vortices, leaves the sphere and strikes the wall, as seen in
figure 24(d). The secondary vortex is stretched by the wake vortex and becomes a
sheet-like structure (figure 24e, f ). Finally, the secondary vortex extends radially and
breaks into two parts. One part is advected around the wake vortex while the second
component remains trapped close to the point of contact between the sphere and the
wall in figure 24(g).
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 25. Collision of a sphere onto a wall. The coefficient of restitution for a dry collision
is zero in the left half and 0.5 in the right half of each frame. Vorticity contours are shown.
Re = 865, hmin = 9.8 µm, and τ ′ =

√
d/g. (a) Before collision, (b) 0.76τ ′, (c) 1.56τ ′, (d) 2.36τ ′,

(e) 3.16τ ′, (f ) 3.39τ ′.

the up-going sphere. A separated region on the sphere surface with vorticity of the
same sign as the primary vortex is observed in both cases. In addition, a region with
the opposite sign of the primary vorticity is generated in both cases at the wall. In
the left half of the figure 25(c), a coherent structure leaves the sphere and extends
radially, whereas in the right side of this frame, since the particle is moving downward,
anti-clockwise vorticity spreads out below the sphere. The secondary vortex is divided
into two portions, one above the sphere on the surface, while the larger portion of
this secondary vortex remains between sphere and the wall. In figure 25(d), since the
particle is moving downwards, the clockwise vorticity above the sphere is diffused
while the anti-clockwise vorticity below the sphere grows. The coherent structure
which has extended radially and the primary vortex far above the sphere are similar
to the case without rebound. In of figure 25(e, f ), the vortices have diffused and
clockwise or anti-clockwise vorticity is observed around the sphere for upward and
downward motion of the sphere, respectively.

Figure 26 shows a comparison between the cases of zero coefficient of restitution
(left half of each frame) and dry coefficient of restitution equal to 1 (right half of each
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Figure 26. Collision of a sphere onto a wall. The coefficient of restitution for a dry collision
is zero in the left half and 1.0 in the right half of each frame. Vorticity contours are shown.
Re = 865, hmin = 9.8 µm, and τ ′ =

√
d/g. (a) Before collision, (b) 0.76τ ′, (c) 1.56τ ′, (d) 2.36τ ′,

(e) 3.16τ ′, (f ) 4.76τ ′, (g) 5.56τ ′.

frame). Figures 26(a)–26(c) are similar to the corresponding frames of the previous
case, except that now, the secondary vortex, which is the wake vortex during the
upward motion of the sphere, is larger than the one observed at the same time in
figure 25. In figure 26(d, e), the clockwise vorticity below the sphere moves above
it due to the change in direction of the motion of the sphere. In figure 26(f ) this
clockwise vorticity which remained from the secondary vortex is advected from the
sphere and deviates the wake vortex of the downward moving sphere. The coherent
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structure near the wall is similar to that encountered for the case without rebound.
In general, the vorticity field is stronger for larger dry coefficient of restitution due to
the fact that less energy is dissipated during the collision process.

The correlation in equation (5.3) suggests that the inertia of the fluid only influ-
ences the coefficient of restitution through the added mass. This may be surprising
given the rich vortex dynamics shown in this section. However, even though the inertia
of the fluid significantly affects the flow field, it does not affect the effective coefficient
of restitution which is measured on a much smaller time scale. This is in agreement
with the fact that the Reynolds number has a small effect on the effective coefficient
of restitution. It is noteworthy that the vortical structures that detach from the sphere
as a result of the collision do not affect the rebound process. Results presented for
the collision of a droplet on a wall in figure 20 indicate the same trend. One could
argue that the entire process is dominated by the flow in the gap between the object
and the wall.

6. Conclusions
In this paper, we describe a finite-volume distributed Lagrange multiplier algorithm

to solve particulate flows with and without collisions. We show that our fluid–particle
solver produces results which are in very good agreement with numerical studies of
benchmark viscous flow problems. An efficient approach is introduced to simulate
collision between particles. Instead of applying a repulsive force between particles, as
was done by previous researchers, the contact force is calculated and its magnitude is
the criterion which determines the end of the contact. An advantage of this method is
that particles can touch and there is no need to choose a stiffness parameter a priori.
Comparing our results for the bouncing motion of a solid sphere onto a solid plate
in an ambient fluid for different Stokes numbers shows very good agreement with the
results by Gondret et al. (2002). We also provide a new description and interpreta-
tion of the collision process in a viscous flow. Furthermore, it is shown that the effect
of surface roughness on rebound decreases for higher Stokes numbers. The evolution
of vorticity due to collision of a sphere with a wall and the effect of the coefficient of
restitution are discussed.

We are grateful to Professor D. D. Joseph for valuable discussions.
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